Applying Machine Learning to Understand Write
Performance of Large-scale Parallel Filesystems

Bing Xie* Zilong Tan' Philip Carns? Jeff Chase® Kevin Harms* Jay Lofstead
Sarp Oral* Sudharshan S. Vazhkudai* Feiyi Wang*
* Oak Ridge National Laboratory
t Carnegie Mellon University
1 Argonne National Laboratory
§ Duke University
9 Sandia National Laboratories

Abstract—In high-performance computing (HPC), I/O perfor-
mance prediction offers the potential to improve the efficiency
of scientific computing. In particular, accurate prediction can
make runtime estimates more precise, guide users toward optimal
checkpoint strategies, and better inform facility provisioning
and scheduling policies. HPC I/O performance is notoriously
difficult to predict and model, however, in large part because
of inherent variability and a lack of transparency in the
behaviors of constituent storage system components. In this
work we seek to advance the state of the art in HPC I/O
performance prediction by (1) modeling the mean performance
to address high variability, (2) deriving model features from
write patterns, system architecture and system configurations,
and (3) employing Lasso regression model to improve model
accuracy. We demonstrate the efficacy of our approach by
applying it to a crucial subset of common HPC I/O motifs,
namely, file-per-process checkpoint write workloads. We conduct
experiments on two distinct production HPC platforms—Titan at
the Oak Ridge Leadership Computing Facility and Cetus at the
Argonne Leadership Computing Facility—to train and evaluate
our models. We find that we can attain < 30% relative error
for 92.79% and 99.64% of the samples in our test set on these
platforms, respectively.

Index Terms—Large-scale parallel filesystem, write perfor-
mance, production supercomputer, machine learning

I. INTRODUCTION

Motivation. HPC productivity could be greatly enhanced by
more accurate I/O performance prediction. At supercomputing
facilities, scientists are allocated limited compute cycles and
charged based on their application execution times. They are
therefore motivated to limit or reduce the time consumption
on I/O. For the facilities, more predictable /O performance
will enable more precise compute-time allocations and further
enable additional jobs on the same platform, increasing the
system utilization. For example, for many scientists the ideal
time spent on writing state snapshots is ~10% of the total
application execution times. In practice, however, the cost may
span a wide range (e.g., 7%—20% for XGC code [39]]) because
of lack of guidance on I/O configuration. With accurate write
performance prediction, scientists can manage the cost by
configuring the write frequencies appropriately (§II-A).

Challenge. For production supercomputers, predicting 1/O
performance is challenging. One major obstacle is the high
performance variability. Supercomputers and their filesystems

0.4 P B
03 1
02 F ,

0.1 - A Cetus |
O Titan

0 I I I I I
5 10 15 20 25 30

Max/Min

Fig. 1: CDFs of write performance variations on Cetus and

Titan. The x-axis represents the relative measures (722) of the

write bandwidths of the samplesﬂ used in experimehts (.

are shared by all running applications. These applications can
be from different science domains with varying I/O outputs.
The shared systems therefore exhibit significant performance
variability to individual users. As an example, we present in
Figure (1| performance variations with synthetic I/O bench-
marks on the production supercomputers Cetus [1] at the Ar-
gonne Leadership Computing Facility (ALCF) and Titan [24]]
at the Oak Ridge Leadership Computing Facility (OLCF).
Of the samplesﬂ 10.41% on Cetus and 49.71% on Titan
report the peak write bandwidths as >1.3x their minimum
bandwidths; in the worst cases, the max/min bandwidths differ
by over three orders of magnitude for both machines. This
high variability also exists widely on other supercomputing
platforms and filesystems [17]], [30[, [36[, [37], [40].

The other major obstacle is the limited user-level visibility
into the I/O subsystems, which we refer to as the black-box
issue. For most cases, end users and I/O middleware libraries

!For each sample point, we generate writes repeatedly with the same set
of settings, including a specific write pattern, specific I/O configurations, and

system settings (see §IV-A).



treat these subsystems as black boxes with minimal system-
level insight. At supercomputing facilities, often the computing
platforms and filesystems are monitored separately and oper-
ated by separate teams, with systemwide logs available only to
their administrators [34]. Therefore, end users find it hard to
understand I/O behavior and associated underlying root causes.

Our Approach. We address these two obstacles with a
regression approach:

1) To address the high performance variability, we model
the mean performance. 2) To address the black-box issue,
we consider the target systems as multistage storage paths
and treat the aggregate load, load skew, and resources in use
on individual stages as I/O performance-related parameters.
We build model features on the parameters and derive them
from I/O patterns and system design and configuration. 3) To
improve prediction accuracy, we build models with Lasso.

This approach is an extension of our earlier study on super-
computer Titan and its Lustre-based filesystem Spider [39].
Compared to the Titan study, this work discusses the write
performance for both Lustre- and GPFS-based filesystems and
builds predictive models with Lasso over linear regression for
higher model accuracy.

We investigate the potential of our approach by applying it
to a common I/O motif: the file-per-process data checkpoint. In
this scenario, the engaged processes write data simultaneously,
and the data from each process is stored in a separate file.
This is a key initial step toward a more generalized model
for I/O performance. We empirically evaluate our approach
on two production supercomputers, Cetus at the ALCF and
Titan at the OLCEF, deployed with GPFS and Lustre filesystem
software, respectively. We draw two major conclusions:

1. Our approach works effectively. For the best models on the
GPFS and Lustre systems, up to 92.79% and 99.64% of the
samples of a test set attain <30% relative errors, respectively.

2. Our approach identifies the most relevant features for write
performance prediction. Our analysis shows that the write
behaviors of the GPFS system are dominated by the metadata
load and load skew within the supercomputer and the resources
used in its filesystem; the write behaviors of the Lustre system
are heavily determined by the aggregate load, load skew, and
resources in use within the supercomputer and the load skew
within the filesystem.

For end users and system administrators working on the sys-
tems similar to Cetus and Titan, our approach and the selected
best models can be used to manage the I/O configurations at
the application level or to configure burst parameters (e.g.,
tuning I/O configurations on Lustre filesystems) dynamically
at system level during job allocations and based on the
historical statistics of their I/O behaviors. Our initial success
in modeling file-per-process write workloads indicates that
this is a promising method for more generalized HPC 1/O
performance modeling. We intend to explore its application to
other I/O access patterns in future work.

II. BACKGROUND

A. Scientific Writes

At supercomputing facilities, a large number of codes are
numerical simulations. Such like XGC [2] and S3D [6] codes,
these applications are submitted as jobs (runs) to execute
iterative computations and produce data periodically.

A job/run has a job description file, specifying the numbers
of cores, nodes, and problem settings. Its problem space is
partitioned into a group of equal-sized subspaces; each process
runs on a different coreﬂ for a different subspace; all processes
execute the same numerical methods (solver) over a sequence
of iterations and sync with each other at the end of each
iteration.

A run produces data that can be represented by one or more
write patterns. Each pattern has a number of synchronous
output bursts originating from a set of allocated compute
nodes/cores; it repeats on a fixed time interval (write fre-
quency) with each burst recording the states (numerical values)
of the same variables. For each operation in a pattern, each
core produces the same-size bursts across iteration intervals
and the load is balanced among the engaged cores. To sum-
marize, these applications exhibit three major properties:

First, write patterns are fixed and predictable. The number of
bursts (determined by the number of I/O write issuing cores)
and burst size (determined by the variables/spaces recorded
per burst), are all preconfigured as problem settings.

Secondly, job execution time is predictable. The total exe-
cution time is the sum of the times spent on computation and
I/O writes. The computation time can be estimated based on
the problem and its resource setting [39]. In addition, with an
accurate prediction of write times, a job’s execution time can
be predicted.

Thirdly, write cost is tunable. Users may want to control
write cost. For example, they may want to limit the checkpoint-
ing cost to 10% of job execution times. With the time estimates
on computation and writes, users can control the checkpointing
cost by choosing its write frequency appropriately.

We limit our attention to the applications: for each write
pattern, a fixed set of cores produce equal-size bursts (in-
dependent files) repeatedly. For these applications, the mean
performance of output patterns is effective to address the write
behaviors of applications [39]].

B. Supercomputers and Their Filesystems

This section discusses two target supercomputer I/O subsys-
tems: Cetus/Mira-FS1 and Titan/Atlas2, deployed with GPFS
and Lustre filesystem software respectively.

2Blue Gene/Q machines [11]] utilize 4-way hyperthreading and support 4
concurrent processes per core; but most users still choose to run one process
on a different core because of the memory limitation (e.g., 16 GB memory
per compute node on Cetus).

3For some codes (e.g., XGC), data imbalance and variation may_occur
across processes and operations, but in most cases it is ignorable [39]H



Metadata
pool

Y

Compute Bridge Links 10
Nodes Nodes Nodes

NSD
servers

NSD

m , o g2 =
e ) -
>S4 -

Cetus Mira-FS ( Mira-FS1)

(a) Cetus and Mira-FS1

s MDS
Y
Compute 110 OSSes OSTs
Nodes Routers
xxxn SION
xxn
X
e
oxxn
Titan Spider 2 ( Atlas2)

(b) Titan and Atlas2

Fig. 2: Architectures of the target I/O subsystems. Cetus
and Titan take different strategies for relaying filesystem
operations. For each system, one mapping policy is employed
to connect compute nodes to bridge nodes (Cetus) and to I/O
routers (Titan) (discussed in and §lI-B2), respectively.

1) GPFS on Cetus and Mira-FS1: Cetus is an IBM Blue
Gene/Q machine, hosted at the ALCF and connected to Mira-
FS: a center-wide GPFS filesystem providing I/O services
to Cetus and other supercomputers at the ALCF. Figure 23]
presents Cetus and Mira-FS.

On Cetus, 4,096 compute nodes are connected by a 5-D
torus interconnect with 16 CPU cores per node. In addition
to compute nodes, 32 dedicated I/O forwarding nodes are
used to forward filesystem operations from the compute nodes
to the Mira-FS filesystem. These I/O forwarding nodes are
evenly distributed through the torus, but not connected to
compute nodes directly. In particular, they are connected to
subsets of compute nodes via bridge nodes. In each subset,
128 compute nodes shares two designated bridge nodes and
one I/O forwarding node.

Mira-FS has two partitions: Mira-FSO and Mira-FS1, each
a single namespace on a metadata pool and a data pool. We
experiment on Mira-FS1 with 1 and 336 Network Storage
Disks (NSDs) for metadata and data services, respectively. In
the data pool, 48 NSD servers manage 336 (48 x 7) NSDs in
a round-robin way.

To absorb bursts in parallel, GPFS stripes burst data across
NSDs in its data pool, as shown in Figure [3a

GPFS striping policy. For a burst, GPFS partitions the data
into a sequence of blocks and distributes the block sequence

across an NSD sequence in a round-robin way. The block
size (GPFS block size) and the NSD sequence in use are not
controlled by the users; the GPFS block size is determined
at the creation time of a GPFS filesystem; the NSD sequence
starts from a randomly chosen NSD and may span over the
entire data pool. In Mira-FS1, GPFS block size is configured
as 8§ MB.

GPFS subblock policy. GPFS manages filesystem fragmenta-
tion with subblocks. It divides each block into 32 equal-size
subblocks. When a file or the last block of a file is less than
the block size, GPFS partitions the file/block data into a group
of subblocks and merges/migrates the subblocks to the local
and/or remote NSDs to form full blocks. This policy works at
file_close when the file/block size is determined.

2) Lustre on Titan and Atlas2: Titan is a Cray XK7
machine at the OLCF connected to a Lustre filesystem Spider
2, shown in Figure 25

On Titan, 18,688 compute nodes are connected by a 3-D
torus interconnect; each node has a 16-core CPU and a GPU
and runs a Lustre software stack serving as a metadata client
(MDC) and an object storage client (OSC). Titan is connected
to Spider 2 by a Scalable I/O Network (SION).

Spider 2 is a center-wide Lustre file system with two
partitions (Atlasl and Atlas2), each having a metadata server
(MDS) and 1,008 object storage targets (OSTs). An MDS
stores the metadata of files and objects on RAID devices,
called metadata targets (MDTs). We focus on Atlas2 in which
144 object storage servers (OSSes) manage the 1/O traffic for
1,008 OSTs (144 x 7) in a round-robin way.

Unlike Blue Gene machines that utilize bridge nodes and
I/O forwarding nodes to route I/O operations, compute nodes
in Titan access Spider 2 via 172 I/O routers. The routers are
evenly distributed through the torus and route I/O traffic stati-
cally [12], [38]: a compute node is connected to a fixed group
of “closest” I/O routers. Figure 2] illustrates the distinction
between the architectures of Cetus and Titan I/O subsystems.

Different from GPFS, data striping in Lustre is user con-
trolled, as shown in Figure @

Lustre striping policy. A burst is partitioned into a sequence
of equal-sized blocks, distributed across a sequence of OSTs
in a round-robin way. The block size, OST-sequence length,
and OST start index are three configurable parameters, called
stripe size, stripe count, and starting OST. As its default
configuration, Atlas2 takes 1 MB as its stripe size, 4 as its
stripe count, and a randomly chosen starting OST.

3) Observations: Across two representative filesystems, we
find the following:

First, from the view of I/O writes, supercomputers and their
filesystems are multistage write paths, including the stages
from compute node to storage target (Figure [2)).

Secondly, for a write pattern on a write path, the aggregate
load on each stage can be predicted based on the numbers of
nodes/cores in use and the burst size.



GPFS block size

——
A burst a, a, | a, | a, a, | a,l a, a, a,
o o o
47547147:47:47547:

[
\
§

peoeoeog

NSD, NSD, NSD, NSD, NSD, NSD, NSD, NSD, NSD,

NSD
Servers

J

NSDs

(a) GPFS striping. For concurrent bursts of a
write operation, each burst is striped indepen-

dently (§II-BI}.

stripe size

A burst a,

a, | a, | a, a, a; a,

stripe count
|

OSSes

OSTs

osr,, osT, osT,, osT,, osT,,

(b) Lustre striping For concurrent bursts of a
write operation, users can configure stripe size,

stripe count, and starting OST (§l1-B2).

Fig. 3: GPFS and Lustre Striping Policies

Thirdly, for a write pattern of a job on a supercomputer,
the compute-node locations are known at job allocation; the
resources in use (e.g., the number of routers) and load distribu-
tion among the resources for both compute nodes and network
interconnect are known based on a supercomputer’s network
configuration.

Finally, for a write pattern of a job on a filesystem, the
resources in use and load distribution on storage servers/targets
can be estimated based on the write pattern, striping policy and
server-target mapping.

III. MODELING WRITE PERFORMANCE OF LARGE-SCALE
PARALLEL FILESYSTEMS

A. Features

1) Overview: In this study, we build predictive models to
address the mean write time (f) as a function of features (x1,
Zg, ..., Tp), as shown in Formula [I}

t= f(x1,20,... (D

Consider a write pattern (discussed in that produces
m X n concurrent K-bytes bursts/files from n nodes with m
cores per node. For this pattern, each model feature is an
I/O write characteristic that affects the accuracy of machine
learning models for write performance prediction.

Since the target systems are multistage write paths (Fig-
ure[2)), a write time on a path is the sum of times spent on each
of its stages. We build model features on the performance-
related parameters that potentially affect the time cost on each
stage. In this study, we take three such parameters: aggregate
load, load skew, and resources in use. For each performance-
related parameter, we derive two features for positive and
inverse correlationg’]

Specifically, for metadata stage on a path, aggregate load
means the number of overall metadata operations generated by

)

4We take only positive features for subblock-related parameters on
Cetus/Mira-FS1: when a burst has no subblock (e.g., 8 MB burst), the positive
feature value is 0.

a write pattern. For the remaining stages, aggregate load means
the total bytes of data generated by the pattern. Moreover, we
define load skew on a stage based on the straggler. Specifi-
cally, we measure the maximum load (maximum number of
metadata operations or maximum bytes of data) of a single
component on a stage and use it for load skew. For example,
for I/O router stage, load skew is the maximum bytes of
data processed by a single router. Finally, for a stage we
consider the number of components used as resources in use.
For example, at compute node stage, resources in use means
the number of compute nodes issuing output bursts. As our
follow-on analysis shows, load skew is an important factor to
consider for prediction accuracy.

2) Features for GPFS Filesystems: Figure [2a] presents
Cetus/Mira-FS1 as an example of GPFS deployments. There
are eight stages on the write path. Table [[] summarizes the
features for each of the eight stages. We build these features
based on our observations ([I-B3) and the write operations

discussed in [[I=ATl

Metadata stage. Aggregate load of metadata service (m X n)
and subblock service (m X n X pgyup) can be estimated by the
write pattern and GPFS subblock policy. Here, pg,; represents
the number of subblocks per burst. Resources in use are the
number of I/O nodes (n;,). Load skews of metadata (s;, X m)
and subblock (s;, X m X psyup) can be estimated by the number
of cores per node (m), the locations of the n nodes, and the
compute node to I/O node mapping. s;, represents the size of
the largest node group in the n engaged nodes that connect to
the same 1/O node.

Stages within supercomputers (compute node, bridge node,
link, I/0 node). Aggregate load (m x n x K) can be estimated
by the write pattern. The numbers of compute nodes in use (1),
bridge nodes in use (ny), links in use (n;), and I/O nodes in
use (n4,), load skew on compute nodes (m x K), bridge nodes
(sp xm x K), links (s; x m x K), and I/O nodes (s;, x m x K)
can be estimated by the locations of the n compute nodes and
the network mapping configurations from compute node to



bridge node, to link, and to I/O node, respectively. Here, s;
and s; represent the sizes of the two largest node groups in the
n nodes that connect to the same bridge node and the same
link respectively.

Infiniband network stage. Aggregate load is m x n x K. Since
Infiniband network serves I/O writes as a whole, at this stage
we does not consider load skew and resources in use.

Stages within GPFS filesystems (NSD server, NSD). For each
of the concurrent m x n bursts, the number of NSDs (n4) used
can be estimated by the burst size (K), GPFS block size, and
GPEFS striping policy. The number of NSD servers (n,) used
can be estimated by ngy and the mapping from NSD servers
to NSDs. Moreover, according to the striping policy, the m x
n bursts choose starting NSDs randomly and independently.
Theoretically, for these bursts, the numbers of NSDs (n,,54)
and NSD servers (n,sq4s) used are both random. Statistically,
the numbers are bound to m X n, ng, ns: (1) the more bursts
(m x mn) a write produces, the larger n,,sq4, Nnsds it is likely
to use; and (2) the more NSDs/NSD servers a burst uses (ng,
ng), the larger n,sq, Npsqas the m x n bursts are likely to use.
Thus, we estimate 1n,,5qs = M X 1 X N, Npsd = M X N X Ng.

For the stages of the NSD server and NSD, we develop
features only on aggregate load and resources in use and does
not consider load skew on these two stages. In practice, load
skew may occur on NSDs and NSD servers; and from the
application viewpoint, the skew is unpredictable. In this study,
we find and report in Section [[V] that the write performance
of Cetus/Mira-FS1 can be estimated accurately. This suggests
that the GPFS striping policy performs effectively in balancing
the write load across the entire data pool. We conclude that
for large-scale writes on GPFS filesystems, the load skew on
these two stages is negligible.

Besides the features for individual stages, we develop cross-
stage features for correlated stages. Compared with CPU
resources on supercomputers, I/O bandwidth is a shared and fi-
nite resource; I/O bottlenecks may occur on one or more stages
concurrently [37], [39]. To address the concurrent bottlenecks
from multiple stages, we consider adjacent stages on the write
paths as correlated stages, and we build cross-stage features to
address concurrent load skew (potential bottlenecks) on them.
For example, for compute node and bridge node stages, we
build a cross-stage feature as (m x K) x (s, x m x K).

Moreover, I/O interference is inevitable under production
load. We build features for it by following the observations on
Titan [39]. Specifically, the interference is positively correlated
to the number of compute nodes in use (n) and inversely
correlated to the aggregate burst size (m). Thus, for the
target environment, we build three features for interference: n,
mxnxK? and mexK

In summary, we build overall 41 features for a GPFS write
path: 34 features for individual stages, 4 for correlated stages,
and 3 for interference.

3) Features for Lustre Filesystems: Figure presents
Titan/Atlas2 as an example of Lustre filesystems. There are

six stages on the write path. Table [II| reports the features for
each of the six stages. Similar to GPFS deployments, we build
features based on observations (§lI-B3) and the write patterns

discussed in III-AT]

Metadata stage. The aggregate load is m X n. Since metadata
server provides services as a whole, at this stage we does not
consider load skew and resources in use.

Stages within supercomputers (compute node, 1/0 router). The
aggregate load is m x n x K. The number of I/O routers used
(n,) and the load skew on compute nodes (m x K) and I/O
routers (s, X m X K) can be estimated by the locations of
the n compute nodes and the mapping from compute node to
I/O router. Here s, represents the largest node group in the n
nodes that connect to the same I/O router.

SION stage. Aggregate load is m X n x K. Similar to the
Infiniband network stage on Cetus/Mira-FS1 (§III-A2)), at this
stage we only build features on aggregate load.

Stages within Lustre filesystems (OSS, OST). The aggregate
load (m x n x K) can be derived from the write pattern. The
number of OSTs used (n,s:) can be estimated by the write
pattern and the configurations on the Lustre striping policy.
The number of OSSes (n,ss) used can be estimated by n,s;
and the mapping from OSSes to OSTs. The load skew on
OSTs (s0s¢) and OSSes (s,s5) can be estimated by the striping
configurations and OSS-OST mapping.

Similar to we build cross-stage features for adjacent
stages on the Lustre write path, and for interference as: n,
mxrlzxK’ and mexK'

In summary, a Lustre write path has 30 features: 24 for in-
dividual stages, 3 for correlated stages, and 3 for interference.

B. Cross-Platform Modeling Methodology

1) Feature Selection: Feature selection is widely used to
improve feature or model interpretability and enhance model
accuracy with the right subset of features. Selection models
can be divided into three major groups: filter methods, wrapper
methods, and embedded methods [26]]. In particular, embedded
methods were developed recently to overcome the issues of
collinearity and overfitting of the other two methods.

In this study, we use Lasso from embedded methods to
both select features and train models. Lasso is built on linear
relationships. It solves a least square problem by shrinking the
absolute sum of the coefficients for features, with shrinkage
parameter \.

Compared to our earlier prediction work on Titan [39],
this study chooses Lasso over linear regression for its better
interpretation and higher model accuracy (discussed in §IV).
Such like decision tree and Random forest, other learning
techniques can also be used for performance modeling and
feature selection. We leave the further exploration on other
techniques as our future work.

2) Building Regression Models: In this study, we model
write time (y) as a function (f) of dataset X. Specifically,



Performance-Related Parameter

Metadata Cost

Data-Absorption Cost

Stage

Metadata

Subblock Compute Node

[ Bridge Node

‘ Link ‘ 1/0 Node ‘ Network ‘ NSD server ‘ NSD

Aggregate Load

mxn,

T
e m X n X psup

- T
mxnxK, osg

Load Skew

Sio X M,

mx K,

T
Sio X T X Pub XK

Sioxm

K, L

= ‘ spxmx K,

. S
Spxmx K

‘ sixmx K, Sio Xxm X K,

SIXmXEK ‘

Resources in Use

n, l, m, s
n m

T
Nios 7~

[ =

T

— T
SioXmxK
\ B

T

| nio:

[ & | M50 sdss 5 | Mde 5 Mnsas

TABLE I: Features of individual stages of GPFS deployments. For each stage, we derive three performance-related
parameters. For a parameter, we build two features to address positive and inverse correlations.

Performance-Related Parameter | Metadata Cost Data-Absorption Cost

Stage Metadata Compute Node [ /O Node [ SION T OSS [ OST
Aggregate Load mxn, ﬁ mxnxK, m

Load Skew o mx K, ﬁ, K, % ‘ spxmx K, m ‘ Sosss 5= ‘ Sost» %
Resources in Use m, % m, % n, o ‘ Ny, % ‘ Nosss 77 ‘ Tost, nl

TABLE II: Features of individual stages on Lustre deployments. For each stage, we derive three performance-related
parameters. For a parameter, we build two features to address positive and inverse correlations.

Scale (n) Cores  per | Burst Size (K)

Node (m)
1,2, 4,8, 16, | 1,2,4,8,16 | IMB—5MB 6MB—25MB
32, 64, 128, 25MB—100MB 10IMB—250MB
200, 256, 400, 25IMB—500MB  501MB—1024MB
512 1025MB—2560MB
1,2, 4,8, 16, | 1,2,4,8,16 | 256IMB—5120MB S12IMB—
32, 64, 128 7680MB 768 1MB—10240MB

TABLE III: Generating write patterns on Cetus/Mira-FS1.
The first row generates data for both training and testing; The
second row generates larger bursts for training purpose only.

Scale (n) [ Cores per | Burst Size (K) stripe_count (W)
Node (m)
1.2, 48, | 8from 16 TMB—5MB 6MB—25MB 25MB— | 1—4 5—8 9—16
16, 32, 64, 100MB 10IMB—250MB 251MB— | 17—32 33—64
128, 200, 500MB 501MB—1024MB 1
256, 400, 025MB—2560MB
512
1,2, 4,8, | 4 from 16 2561MB—5120MB SI2IMB— | 1—4 5—8 9—16
16, 32, 64, 7680MB 768 1MB—10240MB 17—32 33—64
128
TABLE IV: Generating write patterns on Titan/Atlas2.

The first row generates data for both training and testing; The
second row generates larger bursts for training purpose only.

we use Lasso() from the scikit-learn toolkit [29] to train the
models.

3) Searching for the best model: We search for the best
model from a regression model space, trained across training
sets and the values of model parameters. Specifically, Lasso
has one model parameter (shrinkage parameter \);

We evaluate the trained models by their mean square error
(MSE) on the validation set. In this study, we train models on
small-scale writes and test the trained models on large-scale
writes; we use the randomly chosen samples of test data as
the validation set; the set size is 20% of the test set.

For each two trained models in Lasso, we consider one
model is better if its MSE is smaller. Following the same rule,
we search for the best models with minimum MSEs.

IV. EXPERIMENTAL EVALUATIONS

This section presents the evaluation of our machine learning
approach on Cetus/Mira-FS1 and Titan/Atlas2. We use IOR as
a load generator to produce data for model training, validation,
and testing. We conduct experiments on Cetus in Aug. 2017

— Feb. 2018 and on Titan in Dec. 2016 — Feb. 2018,
respectively.

A. Experiment Data

We train models with small-scale writes (<128 compute
node’) and test them on medium-scale writes (200-512
nodes). Tables [[II| and [[V| present the write patterns generated
on GPFS/Mira-FS1 and Titan/Atlas2, respectively.

We generate samples from these patterns by following the
semi-random sampling method proposed in [39]. Moreover, to
address performance variability, in this study we further cate-
gorize the collected samples into converged and unconverged
samples.

In particular, for a write scale (n) on Cetus/Mira-FS1, we
generate samples for different write patterns by varying the
number of cores per node (m) and burst size (K). For a
write scale on Titan/Atlas2, we produce samples for different
patterns by varying m, K and W (stripe count). Thus, a write
pattern is a combination of (m,n, K) on Cetus/Mira-FS1 and
a combination of (m,n, K, W) on Titan/Atlas2, respectively.
For each pattern on Cetus, we use m cores from all of
the possible choices; for a pattern on Titan, we choose m
cores randomly in the range of 1 — 16 cores. For both of
the systems, we design the burst-size ranges based on our
observations from the machines hosted by the ALCF. For a
pattern, we choose K -bytes from a burst-size range randomly.
Moreover, for the write patterns on Titan/Atlas2, we take the
Lustre configuration as 1MB (stripe sizeﬂ W, and the starting
OSTs as an OST sequence [39].

For each write pattern, we repeat the identical IOR exe-
cutions and collect the write time of each execution from
the minimum of file_open() to the maximum of file_close()
among the coordinated write bursts. A sample is the mean
write time of a pattern. We estimate the sample convergence
by the central limit theorem [28] for its effectiveness on the
dataset with an unknown mean In the central limit theorem,
we take a confidence level =0.9 (Titan) and =0.98 (Cetus) and

5We choose the number in consideration of the ratios of compute node to
I/0 node (128:1 on Cetus) and compute node to I/O router (110:1 on Titan)
({ITE).
Stripe size does not affect write performance when setting in IMB—
32MB, or leads to performance degradation for the values >32MB [37].
7In this study, the mean time of a sample is unknown beforehand.



Model Name Training Set | A Intercept Selected Features
- 0.0864 5.812 7 13017 [ 2.646 7 ] 00022 | 2535 7 | 5.167 " 323870 [ 5.958 ! 297 10
Lassopest_cetus | {32—128} 0011 0902 m sixmxXK | spxmxK | mxn m X K | Nnsds Sio XM X K | Nysa (siXxmXK)X(sp xm X K) | (sp XxXm X K) X Nysds
3.485~ 71 -0.010 2917 8.963~° 1.4637° 2116~ 7 | 9.315° 1T 1.925-10
Lassopest titan | {16—128} | 0.01 | 17826 K T S xmx K Sost mxnx K TmxK [ mx KX G XxmxK) (o X M X K) X Tias

TABLE V: Best Lasso models. The models are defined in §IV-B| Each row reports the information of a model, including the
training set, value of the shrinkage parameter (), intercept and selected features.

error estimator =0.1 for both of the systems by following the
conventional use. To reduce benchmarking cost, we terminate
a pattern’s IOR execution if the pattern reaches a number of
repetitions but its sample is not converged. Specifically, we
take 9 as the termination threshold based on the statistics of
Darshan logs [4]] at the ALCF and in consideration of limited
I/O impact on production load.

We focus on writes >5 seconds, since in production runs
smaller writes are usually hidden by the client-side kernel
buffer of page cache and have little impact on application
performance. For Cetus/Mira-FS1 and Titan/Atlas2, we pro-
duced 4,715 and 3,465 converged samples for training, and
874 and 668 samples for testing (including both converged
and unconverged samples), respectively. For Cetus/Mira-FS1,
the sample size of a write scale ranges from 553 to 660
samples for training and from 73 to 371 samples for testing;
for Titan/Atlas2, the sample size of a write scale ranges from
346 to 545 samples for training and from 142 to 281 samples
for testing.

B. Chosen Models and Features

For each target system, we train models across 255 training
sets, each set a combination of datasets built on different
write scales on 1-128 compute nodes and generated by the
write patterns in Tables [IT] and We vary the shrinkage
parameter in Lasso from 0 to 10 and identify two best
models: Lassopest_cetuss, LASSOpest_titan, representing the best
models located by the learning approach on Cetus and Titan,
respectively. We list the details of the best models in Table

To demonstrate the effectiveness of our approach and the
performance of Lasso, we also address three additional models
for each target system, including the Lasso models trained on
the write scales of 1—128 compute nodes (Lassopgse_cetuss
Lassopase_titan). the linear models trained on the scales of 1—
128 compute nodes (Linearpgse_cetus, Linearygse titan), and
the best linear models identified by our learning approach
(Linearbest_cetus, Linearbest_titan)-

C. Model Evaluation

We use relative true error (€) as the error estimator. Con-
sider that the mean time of the ith sample is ¢; and its
prediction result is .

th—t;
ti
Then €; > 0 suggests that ¢; is overestimated; €¢; < 0 sug-

gests that ¢; is underestimated; and ||¢;|| quantifies prediction

accuracy: smaller ||¢;|| indicates higher accuracy. We focus on
|l€||=20% and =30% in consideration of two factors: (1) these

2

i =

two thresholds are widely used as the conventional numbers
in accuracy measurements in statistics [10] and (2) for HPC
applications, the time cost on I/O writes is expected to be
~10% of the total runtimes (discussed in Section [[I-A). With
a 20%-30% prediction error, we expect the guaranteed 1/O
cost to be 7%—13% of the total runtimes, which is generally
acceptable for production runs [3], [36], [38], [39].

For each target system, we evaluate the models each on
three test sets, with two sets for converged samples and one for
unconverged samples (discussed in §IV-A). The two converged
sets are grouped on the write scales of the samples: small set
(on 200, 256 nodes), medium set (on 400, 512 nodes). For
small and medium sets, each set has 483, 399 samples on
Cetus/Mira-FS1 and 423, 414 samples on Titan/Atlas2. The
unconverged sets are generated on the write scales on 200-
512 nodes, including 98 and 47 samples for Cetus and Titan,
respectively. Figures [ and [5] plot the error accuracy of the
models on the two converged test sets; Table [VI] presents the
accuracy summary for all sets.

In summary, we find our approach is valid and draw two
major conclusions.

1. The approach locates the best models. Compared to the
linear models, the Lasso models are more accurate, and the
best Lasso models attain the highest accuracy on both of the
target systems. In particular, as presented in Table|VI|and for a
set of the small/medium sets, 85.56%-98.56% of the samples
report ||e]| <30% for Lassopest_cetus; 95-58%-99.65% of the
samples report |e]| <30% for Lassopest_titan-

2. The approach identifies the effective features. As shown
in Table [V} we find that, (a) the write behaviors of Cetus/Mira-
FS1 are dominated by the metadata load and the load skews
within Cetus, and the resources used in Mira-FS1; and (b)
the write behaviors of Titan/Atlas2 are heavily determined by
the aggregate load, the load skews, and resources used within
Titan, and the load skew within Atlas2.

D. Inaccurate Estimates

For Lassopest_cetus and Lassopest_titan, 11.1% and 6.29% of
the overall samples on Cetus/Mira-FS1 and Titan/Atlas2 report
lell >30%, respectively. Moreover, we observe that 90.72%
of these inaccurate samples for Cetus and 100% for Titan are
underestimated (e <-30%).

We focus on the underestimated samples and find that for
Cetus 53.1% of the samples are generated by the write patterns
from 16 cores per node; for Cetus and Titan, 90.8% and
71.43% of the samples are generated by 400 and 512 com-
pute nodes, respectively. In order to reduce these inaccurate
samples, adaptive 1/O libraries such as ADIOS can be used to



Target System Model small set medium set unconverged samples
Tel <20% [ Mel <30% | e[l < 20% | N[l < 30% | Mell < 20% [ Tl < 30%

Cetus/Mira-FS1 | Lassopest cetus | 97.12% 98.56% 65.56% 85.56% 41.84% 60.2%

Titan/Atlas2 Lassobest titan | 98.61% 99.65% 96.10% 98.2% 19.15% 25.53%

TABLE VI: Summary of model accuracy

Relative True Error

06 |
O Lassoy o

* LassOpace gpis

Linear best_gpfs | |

A Linear

base_gpfs

L L L I
27.83 50.49 95.92 207.04 1281.38

Samples sorted by t, Unit:Sec

L
13.08

Relative True Error

-0.6 [

Lass0 pegt gprs

% Lasso . oo

Linear oo gors |

Linear ,co oors

. . .
33.61 62.79 107.76
Samples sorted by t, Unit:Sec

L I
14.33 191.26 2330.2

Fig. 4: Evaluation of the Lasso models on Cetus/Mira-FS1. From left to right, the 2 subfigures present the accuracy of the
two Lasso models (Table [V) on small and medium test sets on Cetus/Mira-FS1, respectively; a subfigure plots the relative true
errors (€) of the models on a test set; the errors are sorted along the x-axis based on . The test sets ¢ and ¢ are defined in

fIvC

Relative True Error

A,
6L 24 A s Lass0 et swre | |
A A % A * LasS0 g uswe
-08 ® A LIN€A et uswe
A@A A Linear oo swe
1 . A . . . !
5 8.33 14.34 20.92 34.38 48.4 130.61

Samples sorted by t, Unit:Sec

Relative True Error

A
-0.6 Aﬁ A& O Lasso
A A PN HAA A best_lustre
A A *  LassOp.co ugre |
A A N 20
048 A RET N Linear o usve | A
R YN N A A A Linear e
A

L I
21.02 48.85 84.64 250.51

Samples sorted by t, Unit:Sec

Fig. 5: Evaluation of the Lasso models on Titan/Atlas2. From left to right, the 2 subfigures present the accuracy of the two
Lasso models (Table [V)) on small/medium/large test sets on Titan/Atlas2, respectively; a subfigure plots the relative true errors
(e) of the models on a test set; the errors are sorted along the x-axis based on t. The test sets € and ¢ are defined in

adapt write bursts to a smaller number of cores of a node for
Cetus or to a smaller write scale for both Cetus and Titan. We
leave this study for our future work.

V. RELATED WORK

1. I/O performance studies. The Darshan team from Argonne
National Laboratory [4], [21]] investigated the I/O behavior
of supercomputer platforms by analyzing logs and traces col-
lected by continuous monitoring software installed on compute
nodes. Xie et al. and Uselton et al. take similar
approaches by adopting a statistical method to analyze the

I/O behavior of large-scale parallel filesystems; they report
on the straggler effects on the high degree of parallelism of
large-scale 1/O operations. The I/O performance of Lustre-
based file systems has also been studied by several researchers.
Liu et al. [16] probe the application behaviors by analyzing
the server-side I/O logs. Logan and Dickens [20] address the
signatures of I/O performance obstacles on scientific codes
with MPI-IO. Yu et al. characterize the I/O behaviors
of Titan’s predecessor Jaguar for both individual components
and the entire system. Kim et al. [12] study the combined



application behavior on the server side by monitoring the
performance of storage servers.

2. Techniques on I/0O performance improvement. To im-
prove the performance of Lustre-based file systems, Ship-
man et al. devise a class of techniques to support the fol-
lowing: a multithreading pool in OSC [31], asynchronous
journaling[25]], and a fine-grained, load-balancing and network
routing algorithm[9]]. Ren et al. focus on optimizing the I/O
performance by reducing the cost of metadata operations[27],
[18]. Researchers have also developed middleware systems
(e.g., ADIOS) [0, [13l], [19] at the application level to
improve the I/O performance by adapting the I/O patterns and
configurations. Their work is complementary to ours in that
our prediction results can be directly used as the input to their
systems to guide I/O adaptation and configuration.

3. Machine learning studies on HPC I/O. A group of
studies [3], [8, [14], [15], [23] adopt learning models to
predict the I/0O behaviors of HPC applications. In particular,
Behzad et al. [3] and Kumar et al. [14] are among the first
to use machine learning techniques to tune configurable I/O
parameters at application level. Different from these works, we
build machine learning models to predict I/O performance with
the features derived from I/O access patterns, system design
and architecture. Kunkel et al. [15] build decision trees to
predict applications’ noncontiguous I/O behaviors and further
determine the parameter combinations for data sieving in
ROMIO [32]. Omnisc’IO [8], inspired by Sequitur algorithm,
introduces a context-free grammar to learn I/O patterns of HPC
applications. Mckenna et al. [23] model application runtimes
and I/O patterns by building training set on job logs and system
monitoring tools. Compared with the works in this group, our
study presumes that applications’ I/O patterns/behaviors are
known and given and builds learning models on the features
derived from both I/O patterns and filesystem’s design and
configuration. Another group of studies use learning models
to predict the I/O performance variability of supercomputers.
For example, Wan et al. [35] build a hidden Markov model
for a Lustre filesystem to learn the variability of I/O latencies
from a single client to a single OST; and Madireddy [22]]
et al. use a Gaussian process to predict the I/O performance
variability of a Lustre-based supercomputer and derive system-
specific features from Lustre monitoring tools. Different from
the studies in this group, we address the variability issue in
two ways: (1) modeling the mean performance of various I/O
patterns and (2) deriving features to address I/O interference
from competing loads.

VI. CONCLUSIONS

In this paper, we have presented regression models to predict
write performance for GPFS- and Lustre-based filesystems
under production load. We take the mean write time as the
model target; generate features to address the load, load skew,
and resources in use on separate and correlated stages of
the target multistage write paths; introduce a convergence-
guaranteed sampling method to produce a training set space
with a good variety and low benchmarking cost; and describe

an approach to search for the best model from a rich model
space for each target write path. We measure our approach on
two production supercomputers, Titan and Cetus; the results
suggest that the approach can locate good models with high
prediction accuracy for large-scale writes on both machines.

In future work we will investigate how these strategies
can be applied to a wider variety of HPC I/O workloads,
and we will continue to evaluate their accuracy on additional
platforms.

VII. ACKNOWLEDGMENTS

We are thankful to the anonymous reviewers and our shep-
herd Julian Kunkel for their invaluable input, and to many
staff at ALCF and NCCS for answering numerous questions
on supercomputers Cetus and Titan.

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357. This work used re-
sources of the Oak Ridge Leadership Computing Facility,
located in the National Center for Computational Sciences at
the Oak Ridge National Laboratory, which is supported by
the Office of Science of the Department of Energy under
Contract DE-AC05-000R22725. This work used resources
of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract
DE-ACO02-06CH11357. This work used resources of San-
dia National Laboratories. Sandia National Laboratories is a
multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

REFERENCES

[1] Argonne Leadership Computing Facility. Cetus. https://www.alcf.anl.
gov/user-guides/computational-systems.

[2] G. Bateman, S.-H. Ku, J. Cummings, C.-S. Chang, and A. Kritz. XGC
documentation. http://w3.physics.lehigh.edu/xgc/.

[3] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol,
M. Snir, et al. Taming parallel I/O complexity with auto-tuning.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC’13), 2013, pp. 68—
79.

[4] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 24/7
characterization of petascale I/O workloads. In Proceedings of 2009
IEEE International Conference on Cluster Computing (Cluster’09),
2009, pp. 1-10.

[5] C. S. Chang, S. Klasky, J. Cummings, R. Samtaney, A. Shoshani, L.
Sugiyama, D. Keyes, S. Ku, G. Park, S. Parker, et al. Toward a first-
principles integrated simulation of tokamak edge plasmas. Journal of
Physics: Conference Series 125, 1 (2008), 012042.

[6] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
R. Sankaran, S. Shende, and C. S. Yoo. Terascale direct numerical
simulations of turbulent combustion using S3D. Computational Science
and Discovery 2, 1 (Jan. 2009), 015001.

[71 A. Choudhary, W. Liao, K. Gao, A. Nisar, R. Ross, R. Thakur, and R.
Latham. Scalable I/O and analytics. Journal of Physics: Conference
Series 180, 1 (2009), 012048.


https://www.alcf.anl.gov/user-guides/computational-systems
https://www.alcf.anl.gov/user-guides/computational-systems
http://w3.physics.lehigh.edu/xgc/

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross. Omnisc’IO: a grammar-
based approach to spatial and temporal I/O patterns prediction. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’14), 2014, pp. 623—
634.

M. Ezell, S. Oral, F. Wang, D. Tiwari, D. Maxwell, D. Leverman, and J.
Hill. I/O router placement and fine-grained routing on Titan to support
Spider II. In Proceedings of the Cray User Group Conference (CUG’14),
2014, pp. 1-6.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning. Springer series in statistics New York, 2001.

M. Gilge, et al. IBM system blue gene solution: blue gene/Q application
development. IBM Redbooks, New York, 2014.

Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow, Z. Zhang, and
B. W. Settlemyer. Workload characterization of a leadership class storage
cluster. In Proceedings of the 5th Petascale Data Storage Workshop
(PDSW’10), 2010, pp. 1-5.

S. Kumar, J. Edwards, P.-T. Bremer, A. Knoll, C. Christensen, V.
Vishwanath, P. Carns, J. A. Schmidt, and V. Pascucci. Efficient I/O and
storage of adaptive-resolution data. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’14), 2014, pp. 413-423.

S. Kumar, A. Saha, V. Vishwanath, P. Carns, J. Schmidt, G. Scorzelli,
H. Kolla, R. Grout, R. Latham, R. Ross, et al. Characterization
and modeling of PIDX parallel I/O for performance optimization. In
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC’13), 2013, pp. 67-78.
J. Kunkel, M. Zimmer, and E. Betke. Predicting performance of
non-contiguous I/O with machine learning. In Proceedings of the
International Conference on High Performance Computing (ISC’15),
2015, pp. 257-273.

Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai. Automatic
identification of application I/O signatures from noisy server-side traces.
In Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST’14), 2014, pp. 213-228.

G. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms,
Z. Nault, and P. Carns. UMAMI: a recipe for generating meaningful
metrics through holistic i/o performance analysis. In Proceedings of
the 2nd Joint International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW’17), 2017, ACM, pp. 55—
60.

J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata-
rich I/O methods for portable high performance I/O. In Proceedings
of the 23rd IEEE International Parallel & Distributed Processing
Symposium (IPDPS’09), 2009, pp. 1-10.

J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf. Managing variability in the I/O performance
of petascale storage systems. In Proceedings of the ACM/IEEE In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC’10), 2010, pp. 1-12.

J. Logan, and P. Dickens. Towards an understanding of the perfor-
mance of MPI-IO in Lustre file systems. In Proceedings of the IEEE
International Conference on Cluster Computing (CLUSTER’08), 2008,
pp. 330-335.

H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, and Y. Yao. A multiplatform study of I/O behavior on petascale
supercomputers. In Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC’15),
2015, pp. 33-44.

S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Snyder,
and S. M. Wild. Machine learning based parallel I/O predictive
modeling: A case study on Lustre file systems. In Proceedings of
the International Conference on High Performance Computing, 2018,
pp. 184-204.

R. McKenna, S. Herbein, A. Moody, T. Gamblin, and M. Taufer.
Machine learning predictions of runtime and IO traffic on high-end
clusters. In Proceedings of the 2016 IEEE International Conference
on Cluster Computing (CLUSTER’16), 2016, pp. 255-258.

Oak Ridge Leadership Computing Facility. Titan Cray XK7. https:
/Iwww.olct.ornl.gov/computing-resources/titan-cray-xk7/.

S. Oral, F. Wang, D. Dillow, G. Shipman, R. Miller, and O. Drokin.
Efficient object storage journaling in a distributed parallel file system.
In Proceedings of the 8th USENIX Conference on File and Storage
Technologies (FAST’10), 2010, pp. 143-154.

10

[26]

[27]

[28]
[29]

(30]

[31]

(32]

[33]

[34]

(35]

[36]

[37]

[39]

[40]

[41]

H. Peng, F. Long, and C. Ding. Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 8
(2005), 1226-1238.

K. Ren, Q. Zheng, S. Patil, and G. Gibson. Indexfs: scaling file
system metadata performance with stateless caching and bulk insertion.
In Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’14),
2014, pp. 237-248.

M. Rosenblatt. A central limit theorem and a strong mixing condition.
Proceedings of the National Academy of Sciences 42, 1 (1956), 43-47.
scikit learn. scikit-learn:machine learning in Python. http:/scikit-learn.
org/.

W. Shin, C. Brumgard, B. Xie, S. Vazhkudai, D. Ghoshal, S. Oral, and
L. Ramakrishnan. Data Jockey: Automatic data management for HPC
multi-tiered storage systems. In Rroceedings of IEEE International
Parallel and Distributed Processing Symposium (IPDPS’19), 2019,
pp. 511-522.

G. Shipman, D. Dillow, D. Fuller, R. Gunasekaran, J. Hill, Y. Kim, S.
Oral, D. Reitz, J. Simmons, and F. Wang. A next-generation parallel
file system environment for the OLCF. In Proceedings of the Cray User
Group Conference (CUG’12), 2012, pp. 1-12.

R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O
in ROMIO. In Frontiers of Massively Parallel Computation, 1999.
Frontiers’ 99. The Seventh Symposium on the, 1999, IEEE, pp. 182—
189.

A. Uselton, M. Howison, N. J. Wright, D. Skinner, N. Keen, J. Shalf,
K. L. Karavanic, and L. Oliker. Parallel I/O performance: from events
to ensembles. In Proceedings of the 24th IEEE International Parallel
& Distributed Processing Symposium (IPDPS’10), 2010, pp. 1-11.

S. S. Vazhkudai, R. Miller, D. Tiwari, C. Zimmer, F. Wang, S. Oral, R.
Gunasekaran, and D. Steinert. GUIDE: a scalable information directory
service to collect, federate, and analyze logs for operational insights
into a leadership HPC facility. In Proceedings of the 2017 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’17), 2017, pp. 45-54.

L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, and S. Klasky.
Analysis and modeling of the end-to-end I/O performance on OLCF’s
titan supercomputer. In Proceedings of the 19th IEEE International Con-
ference on High Performance Computing and Communications; IEEE
15th International Conference on Smart City; IEEE 3rd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2017,
pp- 1-9.

B. Xie. Output Performance of Petascale File Systems. PhD thesis,
Duke University, 2017.

B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and N.
Podhorszki.  Characterizing output bottlenecks in a supercomputer.
In Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’12),
2012, pp. 1-11.

B. Xie, J. Chase, D. Dillow, S. Klasky, J. Lofstead, S. Oral, and
N. Podhorszki. Output performance study on a production petascale
filesystem. In HPC I/O in the Data Center Workshop (HPC-IODC’17),
2017, pp. 187-200.

B. Xie, Y. Huang, J. Chase, J. Y. Choi, S. Klasky, J. Lofstead, and S.
Oral. Predicting output performance of a petascale supercomputer. In
Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC’17), 2017, pp. 181-192.
B. Xie, S. Oral, C. Zimmer, J. Y. Choi, D. Dillow, S. Klasky, J.
Lofstead, N. Podhorszki, and J. S. Chase. Characterizing output
bottlenecks of a production supercomputer: Analysis and implications.
ACM Transactions on Storage (TOS’19) 15, 4 (2019), 1-39.

W. Yu, J. Vetter, and S. Oral. Performance characterization and
optimization of parallel I/O on the Cray XT. In Proceedings of the 2008
IEEE International Symposium on Parallel and Distributed Processing
(IPDPS’08), 2008, pp. 1-11.


https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/ 
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/ 
http://scikit-learn.org/
http://scikit-learn.org/

	Introduction
	Background
	Scientific Writes
	Supercomputers and Their Filesystems
	GPFS on Cetus and Mira-FS1
	Lustre on Titan and Atlas2
	Observations


	Modeling Write Performance of Large-scale Parallel Filesystems
	Features
	Overview
	Features for GPFS Filesystems
	Features for Lustre Filesystems

	Cross-Platform Modeling Methodology
	Feature Selection
	Building Regression Models
	Searching for the best model


	Experimental Evaluations
	Experiment Data
	Chosen Models and Features
	Model Evaluation
	Inaccurate Estimates

	Related Work
	Conclusions
	Acknowledgments
	References

