
WIRE: Resource-efficient Scaling with Online Prediction for DAG-based Workflows

Bing Xie1∗, Qiang Cao2∗, Mayuresh Kunjir3∗, Linli Wan4∗, Jeff Chase5, Anirban Mandal6, Mats Rynge7
1Oak Ridge National Laboratory, 2East China Normal University, 3Qatar Computing Research Institute,

4Facebook, 5Duke University, 6Renaissance Computing Institute, 7Information Sciences Institute

Abstract—This paper introduces WIRE that manages re-
sources for the DAG-based workflows on IaaS clouds. WIRE
predicts and plans resources over the MAPE (Monitor-Analyze-
Plan-Execute) loops to: 1) Estimate task performance with
online data, 2) Conduct simulations to predict the upcoming
loads based on online estimates and workflow DAGs, 3) Apply
a resource-steering policy to size cloud instance pools for
the maximal parallelism that is consistent with low cost. We
implement WIRE on Pegasus WMS/HTCondor and evaluate its
performance on the ExoGENI network cloud. The results show
that WIRE attains low resource cost with the performance that
is typically within a factor of two of optimal.

Keywords-resource scaling; DAG-based workflows; machine
learning; cloud computing

I. INTRODUCTION

This work discusses the cost-efficient auto-scaling of the
rented virtual infrastructures—cloud resource instances such
as IaaS VMs or containers—to run computational work-
flows. For our purposes, a workflow is a set of sequential
tasks with a partial order specified in advance as a static
DAG of the data flow dependencies among the tasks. For
a workflow run, the workload is a number of tasks, with
each task the unit of computation and resource consumption.
When a group of tasks share the same executable and
the same dependent predecessor tasks, the task group is
considered as a stage. The elastic scaling for workflows is
challenging because the available parallelism (width) of a
workflow may vary dramatically as it runs. On the other
hand, the DAG structure enables the prediction of resource
demands if task runtimes are known.

A workflow scaling policy must address two competing
objectives: performance and efficiency. To minimize the
completion time (makespan), it must provision enough in-
stances to harvest the parallelism available when the work-
flow is wide. But if it provisions instances too aggressively,
then it leaves resources idle when the workflow is narrow.
Idle instances are wasteful. Many previous workflow re-
source managers ([1]–[4]) predict the loads for the recurrent
workflows based on the measurements from previous runs,
which ignores potential variations across runs (§II-B).

This paper presents a cost-efficient scaling system for
DAG-based Workflows on IaaS with Resource Efficiency

∗The authors conducted much of this research when they were with
the Computer Science Department at Duke University.

(WIRE). The core of WIRE is a MAPE control loop
(Monitor-Analyze-Plan-Execute) that builds machine learn-
ing models (online gradient descent method) over a continu-
ous online stream of performance monitoring data, and uses
those models to adjust the cloud resources for the workflow
elastically as it executes. In each iteration, WIRE predicts the
resource consumption of the future task executions and data
transfers based on the best available information (§III-B1).
It uses these predictions to estimate the upcoming load
based on the workflow DAG structure and its current status.
To avoid oscillations and stabilize the prediction results,
WIRE introduces an online prediction policy (§III-B2) in
consideration of both short- and long-term online informa-
tion. Then it applies a resource-steering policy (§III-B2) to
allocate or release cloud resources to obtain the shortest
expected completion time that maintains the utilization of
cloud resources above a given target level over any charging
unit (defined in §III-A). Loosely, WIRE steers the workflow’s
cloud usage over time to obtain the “best bang for the buck.”

WIRE is implemented for Pegasus WMS/HTCondor [5],
[6] using the dynamic resource management APIs for
the ExoGENI network cloud [7]. We evaluate WIRE on
ExoGENI with a Pegasus epigenomics workflow and the
emulated Pegasus workflows whose resource profiles match
the measured Hadoop workflows (see Table I). The results
show that WIRE takes advantage of the available parallelism
with low overhead and low cost, even with many short
tasks and/or imperfect predictions. Compared to the static
executions provisioned for the peak task load, WIRE delivers
4.93×—14.66× of the lower resource cost while delivering
performance within a factor of two for 83.75% of the runs.

II. BACKGROUND AND MOTIVATION

A. Performance Variability: Within a Run

Table I summarizes the workflows used in our experi-
ments. It shows that, for a workflow run, the number of the
tasks of a stage may differ by three orders of magnitude;
the average task execution time of a stage may vary from
several seconds to several minutes. Moreover, for a stage
in a run, different tasks process different inputs and may
execute on different instances with varying network condi-
tions. Thus the tasks in the same stage may exhibit different
performance. This intra-stage performance variability (also
called load skew) is widely observed [8]–[11].

Workflow Name Epigenomics TPC-H/TPCH-1 TPC-H/TPCH-6 PageRank/Intel Hibench
Framework Condor Hadoop Hadoop Hadoop
Run Genome S Genome L TPCH-1 S TPCH-1 L TPCH-6 S TPCH-6 L PageRank S PageRank L
Data Size
(Unit:GB)

0.002 0.013 7.27 29.53 7.27 29.53 0.26 2.88

Number of
Stages

8 8 4 4 2 2 12 12

Aggregate Task
Execution Time
(Unit:Hour)

1.433 13.895 0.402 5.22 0.162 1.136 0.661 5.415

Total Number
of Tasks

405 4005 62 229 33 118 115 313

Number of
Tasks at a
Stage

1—100 1—1000 1—32 1—124 1—32 1—118 6—18 6—60

Average Task
Execution Time
of a Stage
(Unit:Second)

1—54.88 1—57.57 2—13.24 1.05—14.89 2—7.3 3—8.43 5.28—21.5 26.61—166.18

Types of Tasks short/medium/long short/medium/long short/medium short/medium short short short/medium medium/long

Table I
Example Workflows Used in the Experiments

Observation 1 . This variability comes from the varying
parallelism in a run and the load skew in a stage, and
can be derived from the DAGs and runtime performance
information. It motivates us to build WIRE as a DAG-aware
resource management system.

B. Performance Variability: Across Runs
For a stage in a workflow, the task execution times may

vary significantly across runs. This effect undermines the
value of the approaches that predict task execution times
using the data collected from the historic runs.

First, different runs may process different datasets.
Ernest [12] reports that the runs with different datasets vary
in application runtimes and benefit from different resource
provisioning plans. Similarly, we observe from the Hadoop
and Pegasus WMS/HTCondor workflows (Table I) that, for
the same stage across different workflow runs, its task
execution times are highly variable.

Second, different runs may execute on different types of
cloud resources. In this scenario, task execution times may
vary from the previous runs since different instance types
have different performance profiles (e.g., different bandwidth
and capacity of memory and storage). For example, on
Amazon EC2, different types of VM instances have different
per-core network bandwidths [12]. Similarly, we observe
from the ExoGENI [7] cloud sites that different types of
VM instances have different per-core memory bandwidths.

Third, a task may take different execution times in dif-
ferent runs due to the contention or any other interference
from the co-located loads in the runs. [13] reports that
the interference from co-located applications may impact
workflow runtimes significantly.
Observation 2 . For a given workflow, its task execution
times are highly variable across runs. The existing workflow-
based resource management systems (e.g., Jockey [4],

Apollo [3]) dealt with this variability by predicting the loads
according to the job statistics collected from the previous
runs. In contrast, WIRE predicts the upcoming loads with
online information.

C. Predictive Control in WIRE
Adaptation control and elastic resource management are

longstanding problems. Our approach focuses specifically
on the cost-effective elastic resource management for the
computational workflows structured as task DAGs. We ex-
plain the structure of WIRE in terms of a MAPE (Monitor-
Analyze-Plan-Execute) feedback loop [14], a widely used
control model for autonomic and self-adaptive systems. In
particular, the WIRE MAPE loop leverages the following
workflow properties:
(1) Workflow runs are managed and monitored. In a work-
flow run, besides guarding the order of task executions, the
workflow framework monitors the lifecycles of task execu-
tions. Like Hadoop, Spark and Pegasus WMS/HTCondor,
the frameworks support counters, logs [6] and kickstarts
to profile task executions for fault tolerance and user
debugging. For each task, a framework collects its CPU
time and start/end times, samples the memory usage over
time, records input/output data sizes, etc. WIRE uses this
information to predict task performance at runtime (§III-B1).
(2) The load flows of a run are predictable. A workflow
run is executed according to its DAG that specifies the
stage/task dependencies before the run starts. Jockey and
other previous works simulate workflow runs based on the
DAGs and task statistics from the previous runs to predict
resource demands for the next run. In contrast, WIRE runs
online workflow simulations to estimate the future resource
demands (§III-B2) within a single execution, and iterates to
refine the predictions as the task execution data becomes
available.

(3) Task executions are comparable. For a stage in a run, the
tasks share the same executable and stage dependencies. In
WIRE, we predict task performance from the performance
of the peer tasks from the same stages at runtime (§III-C).

III. WIRE

A. Overview

WIRE auto-scales the pool of cloud worker instances
allocated to a workflow. Each worker instance is an IaaS
VM or container instance with l slots to run tasks. A
task consumes a single slot of a worker instance for some
period of occupancy to execute its computation and the
associated I/O data transfer. At any time, WIRE hosts a
single workflow run managed by a framework on a set of
identically provisioned worker instances from a cloud site.
We assume that the instances of a given type have identical
performance, and that the cloud provider rents the instances
of each type at some given price per fixed unit of time—a
charging unit of length u.

From the view of WIRE, a workflow run executes over
a sequence of equal-size time intervals, and each MAPE
iteration plans the worker pool for one such interval. The
pool changes only at the start of an interval. The lag time
(t) is the time to institute a change to the worker pool; it
is the maximum delay to launch or release (terminate) an
instance in the underlying cloud system. Without loss of
generality, we set the time between MAPE iterations to the
lag time, and we presume that the change orders are timed
so that they come into effect at the start of the next interval.
Thus each MAPE iteration runs during the current interval
to plan the pool for the start of the next interval, based on
the measurement data collected from the current pool over
the immediately preceding interval.

To address the high variability (Observations 1 , 2),
WIRE predicts the minimum (conservative) remaining slot
occupancy time for each active task at the start of the target
interval. For this purpose it builds a learning model for
the tasks of a stage from online observations over peer
tasks in the stage (§III-B1). In a stage, it presumes that
the completed tasks are predictive of the others, and that
the unstarted tasks are likely to run at least as long as
the active (incomplete) tasks have already run. WIRE uses
these conservative predictions to maintain a maximal set of
instances that it expects to be highly utilized over at least
the next charging unit.

B. Architecture

Figure 1 depicts the WIRE architecture. In particular,
WIRE’s MAPE loop runs as a daemon co-located on a slot
with the framework master1. It consists of a task predictor,
a workflow simulator, and a cloud steering policy, which

1For workflows across frameworks, a framework master runs as a
process or a JVM instance on a slot of a cloud instance to manage a
worker instance pool for workflow executions.

instance join/leave

update run state
task submit/complete
task/instance status

Task Predictor

Workflow Control Stack WIRE Stack

Workflow Master

Workflow
Simulator

add/delete instances

Cloud Steering
Policy

Cloud Provider

Framework
Master

IaaS

update upcoming load

Figure 1. WIRE Architecture

in this paper is the resource-steering policy. Together they
maintain a run state that tracks the worker instance pool
and annotates the workflow DAG with the completed or
predicted minimum execution times for a subset of tasks
in the run, proceeding as a wavefront through the DAG as
the workflow executes.

1) Task Predictor: At the start of an iteration, the task
predictor harvests measurements from the previous interval
by calling the framework-specific APIs. If a stage has incom-
plete and/or unstarted tasks, the task predictor collects the
execution times (for completed tasks), run times (for running
tasks), data transfer times (for running and completed tasks)
and input data sizes (for all tasks). It uses this data to update
the learning models to predict task occupancy times for the
unstarted or incomplete tasks in each stage. Then it updates
the run state with the prediction results.

A task occupies a slot for a period corresponding to the
sum of its execution time and its data transfer times to
read its input and write its output. The data transfer time
is influenced by the size of the input dataset, data transfer
patterns, transient interference (discussed in §II-B), and the
resource configuration [12]. In this study, we focus on the
data transfer of tasks on dynamic resources, where data
transfer patterns, interference, and the number of instances
vary over time. Accordingly, we presume a task’s data
transfer follows a memoryless distribution. We estimate the
data transfer time for a task (tidata

) according to the most
recent observations: t̃data, where t̃data represents the median
of the data transfer times of the tasks between the n − 1th
and nth MAPE iterations.

2) Workflow Simulator: The workflow simulator takes as
input DAG, updated task states, estimated task occupancy
times, and the current resource allotment (worker instance
set). It simulates workflow execution over the next interval
of length t. The output is the upcoming load: a set of
tasks Qtask = {t0, t1, ..., ti, ..., tn−1} that are expected to
be active at the start of the target interval, where ti is the

predicted minimum remaining slot occupancy time for task
i. It also records the sunk cost to run each active task up
until the interval’s start, i.e., the cost to restart the task at that
time. The restart cost (cj) for an instance j is the maximum
restart cost of all tasks running on slots of the instance.

3) Cloud Steering Policy: Given the upcoming load
Qtask, the resource-steering policy estimates the ideal size p
for the worker pool at the start of the next execution interval.
It adds a new instance when the models predict the load to
be above a target threshold for at least the next charging
unit. It avoids wasteful expenditures by releasing an instance
when a charging unit is about to expire (which would incur a
recharge cost) and there is not sufficient confidence that the
workflow can continue to use it efficiently. When the policy
decides to reduce the pool size, it also selects the instances
to terminate to minimize task restart costs.

C. Algorithms for Task Prediction

We introduce five heuristics to estimate the task occupancy
at a stage according to different scenarios with the varying
availability of the runtime information from the stage. These
heuristics combine three design goals: (1) Predict task per-
formance conservatively when little information is available
at the start of a stage (Policy 1 and 2). (2) Use the median
observations over a sequence of execution intervals (moving
median) to address the longer-term and more-consistent
trends of the task performance at each stage. (3) Compensate
for the load skew among the tasks at a stage with an online
gradient descent model (Policy 5).

For an incomplete/unstarted task i at stage Sj , we predict
its execution time (ti) based on the data from peer tasks at
Sj by one of the five policies given below. In the policies, we
take the median values of task execution times. Compared
to the mean and the three-sigma rule [15]), the median
is more effective to capture “the middle performance” of
skewed data distributions (e.g., Zipfian), which are widely
observed in cloud loads [11], [16].

Online Prediction Policies
For an incomplete/unstarted task i at stage Sj , its
estimated minimum execution time is ti:
(1) No task at Sj starts: ti=0.
(2) Sj has running tasks and no completed task:

conservatively presume that the running tasks are
about to complete. Update ti = t̃run, where t̃run
is the median run time of the running tasks at Sj .

(3) Sj has completed tasks and task i has not started
(e.g., its input data is not available): update ti =
t̃complete, where t̃complete is the median execution
time of the completed tasks at Sj .

(4) Sj has completed tasks, task i is ready-to-run, its
input data size is equivalent to the input size of a

group of completed tasks (L) at Sj : update ti = t̃L,
the median completion time of tasks in L.

(5) Sj has completed tasks, task i is ready-to-run, and
its input data size is new to the input sizes of all
completed tasks at Sj : estimate ti with an online
gradient descent model built for Sj .

Online gradient descent method is a machine learning
technique, introduced to train models with continuous data
streams. WIRE adopts this method to address the dynamism
of task completions at stage level. For each stage in a run,
we build an online gradient descent model and update the
models and their training sets over a sequence of intervals
(MAPE loop iterations). We build the prediction problem
as a linear system with the cost O(N), N is the number of
tasks of a stage. In particular, we choose task input data size
as the feature; for task i at Sj with input data size di, its
expected execution time (ti) in the nth interval is:

ti = α0n + α1n × di (1)

We take α00=0, α10=0 as the initial state in the 1st loop.
Algorithm 1 shows the process to update the model for
stage Sj in the nth interval. In the process, 〈dM , tM 〉 is
a data point in the training set, which represents a group of
completed tasks (M) at Sj with the same input data size
dM and the expected execution time tM , tM = t̃M . t̃M
represents the median of the completed tasks in M . α0n−1

and α1n−1 are the coefficients derived from the algorithm in
the n− 1th interval.

Algorithm 1 Prediction with online gradient descent method
1: for Stage Sj in the nth MAPE loop
2: Training Set: 〈d1, t1〉, 〈d2, t2〉, .., 〈dX , tX〉, .., 〈dM , tM 〉

3: Input Parameters: α0n−1 , α1n−1

4: Learning rate: 0.1
5: α′0 = 0
6: α′1 = 0
7: for 〈dX , tX〉 in training set do
8: α′0+ = − 2

M × (tX − ((α1n−1
× dX) + α0n−1

))
9: α′1+ = − 2

M × dX × (tX − ((α1n−1 × dX) +α0n−1))
10: end for
11: α0n = α0n−1

− 0.1× α′0
12: α1n = α1n−1

− 0.1× α′1
13: return α0n , α1n

It is clear that, for task performance prediction, when a
stage has more completed tasks, the prediction results are
more likely to be accurate. To obtain such stages for the
predictor quickly, WIRE dispatches the first five ready-to-run
tasks to fire in a stage with high priority. These tasks often
run before the final tasks of predecessor stages or of other

Algorithm 2 Resource-steering policy
1: Upcoming Tasks: Qtask = {t0, t1, ..., ti, ..., tn−1}
2: Current Instances: Pcurrent = {s0,s1,...,sj , ..., sm−1}

3: Times to Next Charge: r0, r1,...,rj , ...,rm−1
4: Task Restart Cost: c0, c1, ... , cj , ..., cm−1
5: Charging Interval: u
6: p = resizePool() by Algorithm 3
7: if p > m then
8: request p−m new instances
9: else if p < m then

10: for sj in Pcurrent do
11: if rj ≤ t and cj ≤ 0.2u then
12: terminate sj , resubmit the running tasks on sj
13: Pcurrent.remove(sj)
14: end if
15: if size(Pcurrent) == p then
16: break
17: end if
18: end for
19: end if

stages that are active concurrently. This approach works well
for online prediction and resource-efficient workflows that
provides the performance data for more stages.

D. Algorithms for Cloud Workflow Steering

Algorithm 2 summarizes the resource-steering auto-
scaling policy. It uses Algorithm 3 to determine the ideal
size of the worker pool (instance set) at the start of the next
interval, then forms requests to grow or shrink the current
pool to the target size as needed.

The input to Algorithm 3 is the upcoming load of n tasks
(Qtask) that are projected to be active at the start of the
next interval, and their conservatively predicted minimum
remaining occupancy times. Algorithm 3 assumes that Qtask

is non-empty, else it retains a minimal pool until the next
control iteration, or the workflow terminates. The output of
Algorithm 3 is a pool size p, the desired number of instances
in the worker instance set for the next interval. It greedily
assigns tasks to allocated instances until all upcoming tasks
are consumed and all instances are fully utilized for at least
the next charging unit u. If an instance receives a task that
is predicted to complete before the charging unit expires,
lines 17-23 update the instance state to the time of the task
completion; the loop at line 6 then assigns another task until
the instance is filled.

Algorithm 2 then compares p to the size (m) of the current
pool, and plans adjustments to the pool to take effect at the
start of the next interval. If the pool should shrink (p <
m), then it selects the current instances to release based
on their times to next charge (r0, r1, ..., rj , ..., rm−1) and
task restart costs. It releases an instance only if the charging

Algorithm 3 Resizing the worker pool (instance set)
1: Upcoming Tasks: Qtask = {t0, t1, ..., ti, ..., tn−1}
2: Charging Interval: u
3: Number of Task Slots Per Worker Instance: l
4: Output: Number of Planned Instances: p=0
5: Tused=0, slotused = ∅
6: while size(Qtask) > 0 do
7: while size(slotused) < l and size(Qtask) > 0 do
8: task = Qtask.poll()
9: slotused.add(task)

10: end while
11: if size(slotused) == l then
12: tmin = min(slotused)
13: Tused+ = tmin

14: if Tused ≥ u then
15: p+=1
16: Tused=0, slotused = ∅
17: else
18: for tc in slotused do
19: if tc == tmin then
20: slotused.remove(tc)
21: else
22: tc− = tmin

23: end if
24: end for
25: end if
26: end if
27: end while
28: if p = 0 or max(slotused) > 0.2u then
29: p+ = 1
30: end if

unit expires before the start of the next execution interval
(rj < t) and the restart cost ci is below a target threshold.
The target is arbitrarily chosen as 0.2u in the Algorithms
and experiments, but is freely configurable. The restart cost
ci is the maximum sunk cost (consumed slot occupancy time
as of the start of the next interval) of any task assigned to
a slot on instance i.

The elastic control policies in WIRE project the assign-
ment of tasks to instance slots based on the expected
scheduling algorithm (e.g., FIFO). The policy controller’s
predicted assignment of tasks to instances might differ from
the true schedule selected by the framework master. The
experiment results (§IV-E) show that the WIRE approach
obtains high resource utilization across the sample work-
flows, datasets and resource charging units, suggesting that
the effect of any drift from the predicted assignments is
minor.

E. Discussion

We consider a simple case to illustrate how the scaling
algorithm works. Consider a simple workflow that executes a

sequence of stages and every task is a predecessor of all tasks
in the next stage, if any, and that all tasks in a stage have
the same run time R. Thus all tasks in each stage fire at the
same time, and all tasks active at any given time are from the
same stage. Without loss of generality, suppose further that
the monitoring is continuous, control is instantaneous, and
there is one slot per instance. In fact, the resource-steering
policy does not depend on any of these assumptions.

Consider any stage in this linear workflow. Suppose it
has N tasks starting with an instance pool size P and the
charging unit U . Then after U/N time units the algorithm
predicts that the N tasks of the stage will consume an entire
instance-unit of resource. If the active tasks keep running, it
launches a new instance after (P + 1)(U/N) time units and
then every U/N time units after that.

Suppose R > U . At time U , no task has terminated and
the pool has N instances. Then, after R time units, an initial
group of P tasks completes. The algorithm then predicts
(correctly) the completion time of all tasks in the stage. From
this point it may shrink the pool as the tasks of the stage
complete every U/N time units. The algorithm no longer
grows the pool, because nothing is known about the next
stage until this stage completes. Then, the cycle repeats for
the next stage.

The behavior is similar for R ≤ U . At time R, P
tasks complete. At this point, there are R/(U/N) running
instances in the pool, and the scaling algorithm gains correct
predictions for all tasks in the stage. It resizes the pool to
fully use the remaining paid time of all running instances,
and determines to launch or terminate instances based on
their utilization. The algorithm continues until the last task
of this stage completes. It then moves to the next stage.

For example, consider the case with P = 1 and R =
U− ε (R ≤ U). The first task completes just before the N th
instance is launched, for a peak of N − 1 instances. Each
instance expires and is released immediately after its task
completes. The tasks of the next stage fire when the last
task completes with N = 1, at the start of the next charging
unit. All instances are fully utilized, and the stage completes
within time 2R = 2U . In this scenario, the algorithm has
optimal efficiency—nothing is wasted—and performance is
within a factor of two of optimal.

Alternatively, consider the case with P = 1 and R = U+ε
(R > U). The N th instance is launched at time R = U , just
before the first task completes. The controller renews each
instance just before its task completes: it cannot release these
instances because the sunk cost to restart a task is too high.
The last task completes at time 2R+ ε, firing the next stage
with P = N instances. After that, one instance comes up
for renewal every U/N time units. The controller releases
these instances unless and until it has sufficient confidence
that the demands of the next stage justify renewing them.

For these examples, the cost is the same as non-wasteful
static provisioning. Performance is a factor of N/2 better

than static provisioning with P = 1, but only half as good
as it is with P = N . We use simulations to explore a wider
range of parameter settings in §IV-A.

F. Implementation

We modified 2151 lines of Python code in Pegasus for
the task predictor (1058 lines), resource-steering policy (87
lines), workflow simulator (779 lines), and the cloud-side
messaging protocol (227 lines). We add 94 lines of C++ code
in Condor to prioritize the first five ready-to-run tasks for
each stage at run time. We add/modify 706 lines of Java code
for the ExoGENI client to support the messaging protocol.

IV. EXPERIMENTS

This section evaluates the performance and efficiency
of WIRE. We first explore the performance bounds using
the simulation on a range of linear workflows to gain the
intuition about the algorithm and its limitations (§IV-A).
We then present the experimental results with the real
and synthetic workflows running on the ExoGENI cloud
with elastic provisioning under the WIRE prototype. We
describe the experiment setting (§IV-B) and test workflows
and configurations (§IV-C), and then evaluate the predic-
tion accuracy (§IV-D), resource cost (§IV-E), and overhead
(§IV-F) relative to the purely reactive approaches and static
provisioning.

A. Simulation with Linear Workflows

To illustrate the behaviors and boundaries of the scaling
algorithm, we evaluate its performance under various load
and resource settings by simulation for the class of simple
linear workflows discussed in Section III-E. Specifically, for
a single stage, we analyze the algorithm’s resource usage
(cost) and stage completion time (speed) for varying N , R
and U . We compare the results to the stage’s best possible
performance on the two metrics. A stage achieves its optimal
resource usage NR/U when the tasks of the stage execute
sequentially on a fixed-size pool with a single instance (P =
1). A stage achieves its optimal completion time R when all
tasks of the stage execute in parallel on a fixed-size pool
with N instances (P = N).

We perform simulations on the scaling algorithm for two
cases, R > U and R ≤ U . Figures 2 and 3 present the
simulation results for those two cases respectively. In each
case, we analyze the performance on three workload scales:
small-scale (10 tasks), medium-scale (100 tasks) and large-
scale (1000 tasks). We vary R/U (in Figure 2) and U/R (in
Figure 3).

Figure 2 suggests that, for R > U and across load scales,
the performance of our scaling algorithm is bounded to
1.33× and 1.67× of the optimal performance for resource
usage and completion time, respectively. Moreover, with the
growth of R/U , the algorithm tends to deliver better perfor-
mance and approximates the optimal performance for both

200 400 600 800 1000
R/U

1.00

1.05

1.10

1.15

1.20

1.25

1.30

N
o
rm

a
liz

e
d
 N

u
m

b
e
r

o
f

In
st

a
n
ce

s

Resource Usage

Completion Time

1.0

1.1

1.2

1.3

1.4

1.5

1.6

200 400 600 800 1000
R/U

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Resource Usage

Completion Time

1.0

1.1

1.2

1.3

1.4

1.5

1.6

200 400 600 800 1000
R/U

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Resource Usage

Completion Time

1.0

1.1

1.2

1.3

1.4

1.5

1.6

N
o
rm

a
liz

e
d
 C

o
m

p
le

ti
o
n
 T

im
e

Figure 2. Performance of Resource Steering Policy for the use cases with R > U . From left to right, the 3 subfigures present the results of N = 10,
N = 100, and N = 1000, respectively. In each subfigure, R/U grows along the x-axis. The two y-axis represent the ratios of the policy’s resource usage
(left) and completion time (right) to the best performance. Here, N is the number of tasks at a stage, R is the run time of the N tasks, and U is the
charging unit.

h
200 400 600 800 1000

U/R

10

20

30

40

50

N
o
rm

a
liz

e
d
 N

u
m

b
e
r

o
f

In
st

a
n
ce

s

Resource Usage

Completion Time

1

2

3

4

5

6

7

8

9

10

200 400 600 800 1000
U/R

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Resource Usage

Completion Time

20

40

60

80

100

200 400 600 800 1000
U/R

1.0

1.1

1.2

1.3

1.4

1.5
Resource Usage

Completion Time

100

200

300

400

500

N
o
rm

a
liz

e
d
 C

o
m

p
le

ti
o
n
 T

im
e

Figure 3. Performance of Resource Steering Policy for the use cases with R ≤ U . From left to right, the 3 subfigures present the results of N = 10,
N = 100, and N = 1000, respectively. In each subfigure, U/R grows along the x-axis. The two y-axis represent the ratios of the policy’s resource usage
(left) and completion time (right) to the best performance. Here, N is the number of tasks at a stage, R is the run time of the N tasks, and U is the
charging unit.

resource usage and completion time at the extreme cases
(R/U ≥ 400). It suggests that the scaling algorithm delivers
good performance with low resource cost for R > U , at least
for this idealized group of workflow scenarios. Moreover, it
is possible to modulate the aggressiveness of the heuristic
to obtain a selected balance of cost and speed, e.g., by
modulating the target utilization level.

However, the heuristic is far less effective when the
charging interval is long relative to task runtimes, when the
agility of elastic resource allocation is inherently limited.
Figure 3 shows that, for R ≤ U , when U/R varies in 1 —
1000, the scaling algorithm may deviate widely from optimal
behavior along either metric, depending on the specific
scenario.

B. Experiment Setup

We execute experiments on the ExoGENI network
cloud [7]. An experiment is on an ExoGENI site and has
1 — 12 worker instances (the max number of the worker
instances a site can provide). An instance is an XOXLarge
ExoGENI VM instance and can host up to four concurrent
tasks at a time. We consider the resource charging unit (u)
as: 1, 15, 30, 60 minutes according to the conventional
numbers in production use. In our experiments, the VM
instantiation time is ∼ 3 minutes (the lag time), which we

also use as the time-intervals between MAPE loops in a run.

C. Test Workflows and Configurations

1) Sample workflows: We examine WIRE’s performance
on Hadoop and Pegasus WMS/HTCondor workflows with
four samples, including a computational workflow (Epige-
nomics) [17], two database benchmarks from TPC-H [18],
and a big data benchmark from Intel HiBench [19].
(1) Epigenomics is a scientific workflow that simulates

various genome sequencing operations. It is used by
the USC Epigenome Center to process the data of DNA
methylation and histone modification.

(2) TPC-H is a benchmark suite designed to address ad-hoc
queries and concurrent data modifications. It is repre-
sentative for the database load in production clusters.
We examine WIRE on TPCH-1 and TPCH-6.

(3) Intel Hibench is a big data benchmark suite that mea-
sures workflow frameworks and tools with main-stream
loads in cloud computing. We measure WIRE with
PageRank.

Table I presents the sample workflows in detail. For each
workflow, we experiment on two datasets.

2) Workflow transformation.: To process and measure
the Hadoop runs on Pegasus WMS/HTCondor, we imple-
ment task emulator and transform Hadoop DAGs to Pegasus

WMS/HTCondor DAGs. In a run, task emulator behaves as
if it runs task executables. It reads the performance records
of Hadoop tasks and consumes the amount of resources
according to the records. Moreover, we modify Hadoop
(v2.7.2) to collect the task dependencies for each run and
repeat them in the corresponding Pegasus WMS/HTCondor
DAGs used in the experiments.

3) Workflow runs: We run the sample workflows with
four types of resource management settings: 1) Static set-
tings with 12 VM instances. Relative to Section IV-B,
these settings host workflows with the maximum number of
worker instances. We call the sample runs on these settings
full-site runs. 2) Elastic settings managed by WIRE. We
call the runs on these settings wire runs. 3) Elastic settings
ruled by the active tasks. At run time, the capacities of
these settings vary according to the number of idle/running
tasks. We call the runs on these settings pure-reactive runs.
4) Elastic settings ruled by the active tasks and the resource
steering policy. At run time, we predict the load according
to the number of idle/running tasks and add/delete resources
according to the resource steering policy (§III-B2). We call
the runs on these settings reactive-conserving runs.

For a setting hosting a wire, pure-reactive, or reactive-
conserving run, we monitor and vary the resource setting
on every 3 minutes (§III-B2 and §IV-B). For all workflow
runs on all 4 types of the settings, we repeat each run on a
setting for 3—7 times.

D. Task Performance Prediction

The next section evaluates the online prediction policies
(§III-B1). We focus on the stages with two or more tasks
(overall 45 such stages in Table I) and measure the prediction
results for these stages with Policies 3), 4) and 5). We leave
the efficiency analysis for all 5 policies in Section IV-E.

To address the policy performance on different task orders
(§III-B1), for a stage in a run on a setting 2, we predict task
execution times with 5 randomly-chosen task orders. Plus the
3 — 7 repetitions (§IV-C) for a run on a setting, for each of
the target 45 stages, we report 225 — 315 prediction results.

To evaluate the policy effectiveness on different task
execution times, we categorize the 45 stages into 3 types
based on the average task execution time (µ̄) of a stage,
including short-task stages (µ̄ ≤10 seconds), medium-task
stages (10 < µ̄ ≤30 seconds), and long-task stages (µ̄ >30
seconds). In summary, the 45 stages include 16 short stages,
18 medium stages and 11 long stages respectively; across
workflows, datasets, experiment settings and task orders, we
report the prediction results of 4030, 3900 and 2420 short,
medium and long stages respectively.

Figure 4 presents the CDFs of the prediction errors for
Epigenomics, TPCH-1, TPCH-6 and PageRank. For short

2A setting is 1 out of 16 experiment settings (4 × 4) across full-site,
pure-reactive, reactive-conserving, wire and 4 resource charging units.

and medium tasks, an execution prediction error of even
a few seconds can result in a large difference in resource
scheduling. Therefore, we report true error 3 for short and
medium stages, and relative true error 3 for long stages.

In summary, the 4 sample workflows present a good
coverage on task execution times in production runs. As
shown in Figure 4, the prediction results are highly accurate:
1) For a task, the average prediction error is ≤ 0.1 and
≤ 2.15 seconds for short and medium tasks, ≤ 13.1% for
long tasks. 2) for a stage, on average 93.18% and 79.4%
of tasks at the stage report ≤ 1 second prediction error for
short and medium stages, 83.19% of tasks at the stage report
under 15% prediction error for long stages.

Moreover, the prediction results also report the task-order
issue (§III-B1). It shows that, for a stage across task orders,
29 out of 34 (16+18) short and medium stages report ≤ 1.8
seconds error difference; 8 out of 11 long stages report ≤
15.2% error difference. We look into the outlier stages (e.g.,
a short stage in PageRank S) and find that, the parallelism
within these stages are low (5 — 17 tasks on a stage). At the
same time, we also notice that these outlier stages present
low prediction accuracy with some task orders. We conclude
that: 1) Online prediction may provide imperfect estimates
with insufficient observations. 2) relative to the low cost of
wire runs (§IV-E), it suggests that WIRE can achieve low
cost with this imperfection.

E. Resource Cost and Execution Time

This section evaluates WIRE on resource cost and effi-
ciency. We compare WIRE with the other settings (defined
in §IV-C) on both resource cost and end-to-end performance.

Figures 5 and 6 report the results for resource cost
and relative execution time respectively. For resource cost,
we report the number of resource charging units used to
complete a run for a worklfow on a dataset. For relative
execution time, we first consider that, all execution times of
a workflow on a dataset are comparable, then normalize the
times across settings and resource charging units to the best
performance.

The results suggest that: 1) Wire runs report the lowest
resource cost in most cases among the reported settings. In
summary, for the same workflow with the same dataset, the
resource cost on the other policies is 0.93×— 14.66× of the
cost of wire runs. Specifically, reactive conserving spends
0.93× , 0.94× and 0.96× of charging units to wire runs
do on Epigenomics L, TPCH-1 L, and TPCH-6 L, all for
the charging unit 1 minute. Relative to their execution times
in Figure 6 where WIRE delivers shorter execution times
than resource-conserving policy does, we conclude that, for
small charging units WIRE prioritizes application execution
times over cost. In general, WIRE can effectively consume

3For a task with execution time (t) and estimated time t′, the true error
is: t′ − t; the relative true error is: t′−t

t
.

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

S, short

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
S, medium

10 5 0 5 10
Prediction Error

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

L, medium

1.0 0.5 0.0 0.5 1.0
Prediction Error

0.0

0.2

0.4

0.6

0.8

1.0
L, long

10 5 0 5 100.0

0.2

0.4

0.6

0.8

1.0

C
D

F

S, short

10 5 0 5 100.0

0.2

0.4

0.6

0.8

1.0 S, medium

10 5 0 5 100.0

0.2

0.4

0.6

0.8

1.0

C
D

F

L, short

10 5 0 5 100.0

0.2

0.4

0.6

0.8

1.0 L, medium

10 5 0 5 10
Prediction Error

0.0

0.2

0.4

0.6

0.8

1.0 S, short

10 5 0 5 10
Prediction Error

0.0

0.2

0.4

0.6

0.8

1.0 L, short

10 5 0 5 100.0

0.2

0.4

0.6

0.8

1.0

C
D

F

S, short

10 5 0 5 100.0

0.2

0.4

0.6

0.8

1.0 S, medium

1.0 0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

C
D

F

S, long

10 5 0 5 100.0

0.2

0.4

0.6

0.8

1.0 L, short

10 5 0 5 10
Prediction Error

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

L, medium

1.0 0.5 0.0 0.5 1.0
Prediction Error

0.0

0.2

0.4

0.6

0.8

1.0 L, long

Figure 4. CDFs of Task-performance Prediction Error for the 4 sample workflows. A subfigure presents the results of the short, or medium or long
stages of a workflow with a dataset; a line in a subfigure presents the CDF of the task-performance prediction errors of a stage from a specific experiment
setting (§IV-C), with a specific resource charging unit and on a specific task-order (§III-B1 and §IV-D). Across subfigures, the x-axis represent s true error3

in [−10, 10] seconds for short and medium stages, relative true error3 in [−1, 1] for long stages respectively.

1 15 30 60
0

100

200

300

400

500

600

C
o
st

 o
f

C
h
a
rg

in
g
 U

n
it

s

Epigenomics S

1 15 30 60
0

500

1000

1500

2000

2500

3000 Epigenomics L

1 15 30 60
0

50

100

150

200

250

300 TPCH-1 S

1 15 30 60
0

100

200

300

400

500

600

700

800 TPCH-1 L

1 15 30 60
Resource Charging Unit

0

50

100

150

200

250

C
o
st

 o
f

C
h
a
rg

in
g
 U

n
it

s

TPCH-6 S

1 15 30 60
Resource Charging Unit

0

100

200

300

400

500 TPCH-6 L

1 15 30 60
Resource Charging Unit

0

50

100

150

200

250

300

350 PageRank S

1 15 30 60
Resource Charging Unit

0

500

1000

1500

2000

2500 PageRank L

full-site pure-reactive reactive-conserving wire

Figure 5. Resource Cost. Each subfigure reports the number of resource instances used of a workflow on a dataset across settings and resource charging
units (§IV-C). Across subfigures, we report the mean and std of resource cost, the x-axis represents the 4 charging units: from 1 minute to 60 minutes.

IaaS-cloud resources. 2) WIRE presents low performance
degradation. Figure 6 shows that, wire runs report 1.02×
— 3.57× slowdown; for 1-minute resource charging unit,
its slowdown ranges in 1.02× — 1.65×. Compared to
the best-performance runs (full-site runs), wire runs deliver
4.93×— 14.66× lower resource cost. It suggests that, WIRE
obtains reasonably good performance with low resource cost,
specifically for small resource charging units. 3) the WIRE
solution is robust to imperfect prediction. For all sample
workflows, there exist stages with 1—6 tasks, at which the
prediction accuracy is more likely to be low. Moreover, for
PageRank S, the imperfect prediction occurs on 41.2% of all
stages. Relative to the lowest cost of wire runs across the
sample workflows, we conclude that, WIRE can capture and
apply the observed performance variations within a stage
agilely, which is sufficient to attain low cost even with

imperfect prediction.

F. Overhead

We evaluate overall 127 wire runs (§IV-C) with 4 types
of resource charging units (§IV-B). For all such runs WIRE
uses ≤16KB memory, and consumes 0.011% — 0.49% of
the aggregate task execution time (given in Table I) in each
run. We conclude that the overhead of WIRE is low for both
memory usage and time cost.

V. RELATED WORK

Resource management on private clusters. Mesos [20],
Omega [21], Borg [22] and Yarn [23] are cluster schedulers
that allocate private cloud resources for workflows across
frameworks. DRF [24] and [25] address the resource
fairness issue in shared private clusters. Paragon [26] and
Quasar [27] investigate the job co-location issue: they use

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
la

ti
v
e
 E

x
e
cu

ti
o
n
 T

im
e

Epigenomics S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Epigenomics L

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 TPCH-1 S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 TPCH-1 L

Resource Management Policy
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
la

ti
v
e
 E

x
e
cu

ti
o
n
 T

im
e

TPCH-6 S

Resource Management Policy
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 TPCH-6 L

Resource Management Policy
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 PageRank S

Resource Management Policy
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 PageRank L

full-site

pure-reactive

reactive-conserving 1

reactive-conserving 15

reactive-conserving 30

reactive-conserving 60

wire 1

wire 15

wire 30

wire 60

Figure 6. Relative Execution Time. Each subfigure reports the relative execution times of a workflow on a dataset across settings and resource charging
units (§IV-C). Across subfigures, we report the mean and std of relative execution times; each x value represents a policy on a charging unit, e.g., ‘wire
1’ meaning the wire runs with charging unit 1 minute, ‘resource-conserving 15’ meaning the resource-conserving runs with charging unit 15 minutes.

machine learning techniques to classify workloads and fur-
ther use it to determine their best locations. Compared to
the studies in this category, WIRE addresses elastic resource
management for many-task workloads with high resource
utilization in an IaaS scenario, in which the task scheduler
runs a single workflow on an elastic pool of dedicated
(virtual) worker instances that cost money: the goal is to
obtain the fastest runtime consistent with bounding waste
to a target level as the parallelism of the workflow varies.
More recently, Khorasani et. al. [28] proposed to adapt the
number of executors between the CPU- and I/O- bound
phases in Spark-based applications. Compared to WIRE, they
also employed MAPE feedback loops to manage resource
adaptation with online information, but tune the thread pool
accordingly without the prediction about the future load.

Managing dynamic resources on IaaS. Researchers devel-
oped auto-scalers [29]–[31] to manage elastic virtual infras-
tructures for cloud-based web services and database applica-
tions. They use analytical models to predict load and build
policies to add/delete VM instances for the instantaneous
resource needs. Fox [32] serves as a mediator between cloud
providers and autoscalers. Iosup et al. [33] also identified the
performance variations on Amazon AWS and Google App
Engine. In particular, they derive performance indicators
(e.g. response time) from performance traces and relative
statistics (quartiles, mean, one derivative) from the cloud
provider viewpoint. Compared to these works, we address
elasticity control for the case of task-DAG workflows, whose
resource needs vary as the workflow executes according to a
declared workflow DAG structure that is known to the auto-
scaler. Ilyushkin et al. [34] takes an experimental approach

to evaluate the performance of auto-scalers for workflows.
WIRE is distinct from those approaches in that WIRE uses
online measurements to predict task performance, and plans
resource adaptation for the efficient use of resources based
on resource charging unit.

VI. CONCLUSION

This paper introduces WIRE that maintains workflow
states and predicts near-term resource demand in a wavefront
ahead of the workflow execution. It uses online predictions
to proactively adapt an elastic worker pool. We show that this
approach enables elastic resource allocation on a resource-
steering heuristic that grows the pool for faster execution
while bounding waste and cost.

ACKNOWLEDGMENT

We thank Mert Cevik for his help on arranging the
experiments on the ExoGENI cloud. This research used
resources of the Oak Ridge Leadership Computing Facility,
located in the National Center for Computational Sciences
at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the Department of Energy
under Contract DE-AC05-00OR22725. This research used
the Pegasus Workflow Management Software funded by the
National Science Foundation under grant #1664162. Exper-
iments in the paper used the ExoGENI testbed supported
by the National Science Foundation’s GENI initiative. Work
was also supported by the NSF CC-NIE ADAMANT grant
(Award #1245926).

REFERENCES

[1] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in map-
reduce clusters using mantri.” in OSDI’10, 2010.

[2] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy,
A. Tumanov, J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan,
J. Kulkarni, and S. Rao, “Morpheus: Towards automated
SLOs for enterprise clusters.” in OSDI’16, 2016.

[3] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou, “Apollo: Scalable and coordinated
scheduling for cloud-scale computing.” in Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’14), 2014.

[4] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca, “Jockey: guaranteed job latency in data parallel
clusters,” in EuroSys’12, 2012.

[5] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity,
J. C. Jacob, and D. S. Katz, “Pegasus: a framework for map-
ping complex scientific workflows onto distributed systems,”
Scientific Programming, 2005.

[6] D. Thain, T. Tannenbaum, and M. Livny, “Distributed com-
puting in practice: the Condor experience,” Concurrency and
computation: practice and experience, 2005.

[7] I. Baldine, Y. Xin, A. Mandal, P. Ruth, C. Heerman, and
J. Chase, “ExoGENI: a multi-domain infrastructure-as-a-
service testbed,” in TridentCom’12, 2012.

[8] W. Chen, R. F. da Silva, E. Deelman, and R. Sakellariou,
“Using imbalance metrics to optimize task clustering in
scientific workflow executions,” Future Generation Computer
Systems, vol. 46, pp. 69–84, 2014.

[9] S. R. Ramakrishnan, G. Swart, and A. Urmanov, “Balancing
reducer skew in MapReduce workloads using progressive
sampling,” in Proceedings of the 3rd ACM Symposium on
Cloud Computing (SOCC’12), San Jose, CA, 2012, pp. 16–
24.

[10] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman,
“Upper and lower bounds on the cost of a Map-Reduce
computation,” in VLDB’13, 2013.

[11] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune:
mitigating skew in MapReduce applications,” in SIGMOD’12,
2012.

[12] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Sto-
ica, “Ernest: efficient performance prediction for large-scale
advanced analytics,” in NSDI’16, 2016.

[13] B. Farley, V. Varadarajan, K. Bowers, A. Juels, T. Ristenpart,
and M. M. Swift, “More for your money: exploiting perfor-
mance heterogeneity in public clouds,” in SoCC’12, 2012.

[14] IBM, “An architectural blueprint for autonomic computing,”
IBM White Paper, 2006.

[15] F. Pukelsheim, “The three sigma rule,” The American Statis-
tician, 1994.

[16] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-
G. Chun, “Making sense of performance in data analytics
frameworks,” in NSDI’15, 2015.

[17] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta,
and K. Vahi, “Characterizing and profiling scientific work-
flows,” Future Generation Computer Systems, vol. 29, no. 3,
pp. 682–692, 2013.

[18] TPC, “TPC-H Benchmark,” http://www.tpc.org/tpch/.

[19] intel-hadoop, “HiBench,” https://github.com/intel-hadoop/
HiBench.

[20] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: a platform
for fine-grained resource sharing in the data center,” in
NSDI’11, 2011.

[21] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: flexible, scalable schedulers for large
compute clusters,” in EuroSys’08, 2013.

[22] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management at
Google with Borg,” in EuroSys’15, 2015.

[23] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O. Malley, S. Radia, B. Reed,
and E. Baldeschwieler, “Apache Hadoop YARN: yet another
resource negotiator,” in SOCC’13, 2013.

[24] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant Resource Fairness: fair
allocation of multiple resource types.” in NSDI’11, 2011.

[25] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource
allocation: fairness-efficiency tradeoffs in a unifying frame-
work,” TON, 2013.

[26] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware
scheduling for heterogeneous datacenters,” in ASPLOS’13,
2013.

[27] ——, “Quasar: resource-efficient and QoS-aware cluster man-
agement,” in ASPLOS’14, 2014.

[28] S. O. Khorasani, J. S. Rellermeyer, and D. Epema, “Self-
adaptive executors for big data processing,” in Middle-
ware’19, 2019.

[29] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang,
“Adaptive, model-driven autoscaling for cloud applications.”
in ICAC’14, 2014.

[30] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile:
elastic distributed resource scaling for Infrastructure-as-a-
Service,” in Proceedings of the 10th International Conference
on Autonomic Computing (ICAC’13), San Jose, CA, 2013, pp.
69–82.

http://www.tpc.org/tpch/
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench

[31] A. V. Papadopoulos, A. Ali-Eldin, K.-E. Årzén, J. Tordsson,
and E. Elmroth, “Peas: a performance evaluation framework
for auto-scaling strategies in cloud applications,” TOMPECS,
2016.

[32] V. Lesch, A. Bauer, N. Herbst, and S. Kounev, “FOX: Cost-
awareness for autonomic resource management in public
clouds,” in ICPE’18, 2018.

[33] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance
variability of production cloud services,” in CCGrid’11, 2011.

[34] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. Bauer, A. V.
Papadopoulos, D. Epema, and A. Iosup, “An experimental
performance evaluation of autoscalers for complex work-
flows,” ToMPECS’18, 2018.

	Introduction
	Background and Motivation
	Performance Variability: Within a Run
	Performance Variability: Across Runs
	Predictive Control in WIRE

	WIRE
	Overview
	Architecture
	Task Predictor
	Workflow Simulator
	Cloud Steering Policy

	Algorithms for Task Prediction
	Algorithms for Cloud Workflow Steering
	Discussion
	Implementation

	Experiments
	Simulation with Linear Workflows
	Experiment Setup
	Test Workflows and Configurations
	Sample workflows
	 Workflow transformation.
	 Workflow runs

	Task Performance Prediction
	Resource Cost and Execution Time
	Overhead

	Related Work
	Conclusion
	References

